AI技術開発部の木村です。Mobility Technologies(以下MoT)では、画像認識モデル(主にニューラルネットワーク)の開発に加え、車載デバイス上でモデルをリアルタイムに動作させるための軽量化・高速化にも取り組んでいます。軽量化・高速化には、こちらの資料で紹介しているように枝刈りや蒸留など色々なアプローチがありますが、本記事では量子化による高速化を取り上げます。量子化はモデルの軽量化・高速化に非常に効果的ですが、物体検出モデルなど複雑なモデルでは(この記事で実験するように)量子化による精度低下が発生しやすい傾向にあります。本記事では、YOLOv3とYOLOv5の量子化を具体例として、物体検出モデルの精度低下を抑えつつ量子化するためのポイントを解説します。
はじめまして、AI技術開発部の亀澤です。AI技術開発部では様々な機械学習モデルの開発に加えて、車載デバイスやクラウド上でDeep neural network (DNN)を使ったリアルタイムな予測を行うための、DNNの高速化や軽量化にも取り組んでいます。この記事では、エッジデバイスでDNNを動かす上で、高速化、軽量化に効果があるDNNの量子化について次の3点について説明していきます。